Dejčman, E. N. \& Rodičeva, G. V. (1964). Zh. Neorg. Khim. 9, 807-812.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Haritonov, J. J. \& Dejčman, E. N. (1965). Zh. Neorg. Khim. 10, 853-860.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lindel, W. \& Huber, F. (1974). Z. Anorg. Allg. Chem. 408, 167-174.

Preut, H. \& Huber, F. (1979). Z. Anorg. Allg. Chem. 450, 120-130.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of Tris[2(1H)-pyridinethione-S]copper(I) Nitrate (TPTCN), $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{3}\right] \mathrm{NO}_{3}$

By S. C. Kokkou, S. Fortier* and P. J. Rentzeperis
Applied Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
and P. Karagiannidis
Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

(Received 30 June 1982; accepted 29 September 1982)

Abstract

M_{r}=459.055\), triclinic, $P \overline{1}, a=7 \cdot 187$ (1), $b=10.436$ (2), $c=13.835$ (3) $\AA, \alpha=109.56$ (1), $\beta=$ 85.15 (1) $, \quad \gamma=107.91(1)^{\circ}, Z=2, \quad V=930.2$ (6) \AA^{3}, $F(000)=462, \quad D_{c}=1.639, \quad D_{m}=1.630 \mathrm{Mg} \mathrm{m}^{-3} \quad$ (by flotation), m.p. $=425-427 \mathrm{~K}, \quad \mu(\mathrm{Mo} K \alpha, \quad \lambda=$ $0.71069 \AA)=1.56 \mathrm{~mm}^{-1} ; \quad R=0.059$ for 1162 independent non-zero reflexions. The structure consists of isolated $\mathrm{Cu}\left(\mathrm{SC}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}^{+}$ions connected to the NO_{3}^{-}ions through $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds. The Cu atom in the complex ion is surrounded by three S atoms in a planar, distorted trigonal coordination.

Introduction. Copper-sulphur coordination compounds have been of considerable interest, mainly because of their stereochemistry and its relevance to certain oxidation-reduction reactions in biological systems. Of particular importance are Cu^{1} compounds with the metal atom in the rather rare planar trigonal coordination. We report here the crystal and molecular structure of $\operatorname{tris}[2(1 H)$-pyridinethione $]$ copper (I) nitrate (TPTCN hereafter), which was prepared for the first time by one of us (PK). Magnetic measurements showed the compound to be diamagnetic, indicating thus that copper is in the +1 oxidation state.

Experimental. Pure bright-orange needle-like crystals, aqueous solution of copper(II) nitrate added to 2-mercaptopyridine in ethanol, $0.42 \times 0.10 \times$

[^0]0108-2701/83/020178-03\$01.50
0.07 mm , computer-controlled Philips PW 1100 fourcircle single-crystal diffractometer, cell constants and standard deviations by least-squares analysis of θ angles of 150 strong reflexions, intensity statistics indicated $P \overline{1}, 3 \mathrm{D}$ data, graphite-monochromated Mo $K \alpha, \omega$-scan mode, 3235 unique reflexions, $\theta=3-25^{\circ}, 1162$ with $I>2 \sigma(I)$, no absorption correction, direct methods with MULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1977), phases of 220 strong reflexions determined, 16 non-hydrogen atoms, i.e. $M \mathrm{~S}_{3}$ core and two of the pyridine rings, located on E map, remaining atoms with Fourier syntheses, full-matrix least squares, XRAY (Stewart, Kruger, Ammon, Dickinson \& Hall, 1976), atomic scattering factors and anomalous dispersion corrections for Cu and S from International Tables for X-ray Crystallography (1974), H atoms, at calculated positions, with isotropic temperature coefficients, not refined, $w=1 / \sigma^{2}(F), R=0.059$ ($R_{w}=$ 0.048), mean shift/error ratio 0.18 .

Discussion. The final positional parameters and equivalent isotropic temperature coefficients for the nonhydrogen atoms are given in Table $1 . \dagger$ Interatomic distances and angles are given in Table 2.

[^1]© 1983 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for the non-hydrogen atoms

	x	y	z	$B_{\text {eq }}{ }^{*}$
$\mathrm{Cu}(1)$	-0.1055 (3)	-0.5047 (2)	0.2160 (1)	$4 \cdot 0$
S(1)	0.1641 (6)	-0.5338 (4)	0.1316 (3)	$4 \cdot 0$
S(2)	-0.2185 (6)	-0.3183 (4)	0.2697 (3)	4.8
S(3)	-0.2636 (6)	-0.7020 (4)	0.2530 (3)	$5 \cdot 1$
$\mathrm{O}(1)$	-0.2243 (18)	-0.9524 (12)	0.5711 (9)	7.3
$\mathrm{O}(2)$	-0.2743 (16)	-0.9069 (12)	0.4385 (9)	$5 \cdot 8$
$\mathrm{O}(3)$	-0.2979 (17)	-0.7657 (12)	0.5859 (7)	$6 \cdot 3$
N(1)	0.3494 (16)	-0.2534 (14)	0.2041 (8)	3.2
N(2)	-0.0715 (14)	-0.0506 (11)	0.2761 (8)	2.9
N(3)	-0.4982 (15)	-0.7330 (10)	0.4066 (8)	$3 \cdot 8$
N(4)	-0.2633 (18)	-0.8738(14)	0.5342 (11)	3.7
C(1)	0.3014 (20)	-0.3770 (17)	0.1211 (12)	$3 \cdot 8$
C(2)	0.3830 (20)	-0.3601 (16)	0.0269 (11)	3.5
C(3)	0.4891 (24)	-0.2315 (20)	0.0216 (12)	$4 \cdot 6$
C(4)	0.5317 (21)	-0.1080 (19)	$0 \cdot 1100$ (15)	5.5
C(5)	0.4552 (22)	-0.1209 (17)	0.2045 (12)	3.9
C(6)	-0.0960 (18)	-0.1909 (14)	0.2166 (11)	$2 \cdot 8$
C(7)	-0.0178 (20)	-0.2127 (16)	0.1159 (10)	3.4
C(8)	0.0675 (22)	-0.0969 (20)	0.0836 (11)	4.9
C(9)	0.0885 (21)	0.0461 (17)	0.1497 (12)	5.0
C(10)	0.0131 (19)	0.0628 (13)	0.2427 (10)	$3 \cdot 8$
C(11)	-0.4578(19)	-0.6771 (14)	0.3280 (10)	$3 \cdot 3$
C(12)	-0.5793 (23)	-0.5984 (15)	0.3185 (11)	4.0
C(13)	-0.7249 (24)	-0.5803 (15)	0.3856 (14)	4.7
C(14)	-0.7629 (22)	-0.6444 (15)	0.4648 (11)	$3 \cdot 6$
C(15)	-0.6453 (21)	-0.7219 (16)	0.4716 (10)	$4 \cdot 6$
${ }^{*} B_{\mathrm{eq}}=\frac{8}{3} \pi^{2}$ trace $\tilde{\mathrm{U}}$.				

Fig. 1. Clinographic projection of the TPTCN molecule.

A clinographic projection of the TPTCN molecule is shown in Fig. 1. The characteristic feature in the $\mathrm{Cu}\left(\mathrm{SC}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}^{+}$ion is that the Cu atom is surrounded by the three S atoms in a planar, distorted trigonal coordination. The same was observed in the case of tris(tetramethylthiourea)copper(I) tetrafluoroborate (Weininger, Hunt \& Amma, 1972) and bis(tetraphenylphosphonium) tris(thiophenolato)cuprate(I) (Coucouvanis, Murphy \& Kanodia, 1980). The dis-

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$
(a) Bond lengths

$\mathrm{Cu}-\mathrm{S}(1)$	$2.225(5)$	$\mathrm{N}(4)-\mathrm{O}(1)$	$1.21(2)$
$\mathrm{Cu}-\mathrm{S}(2)$	$2.213(5)$	$\mathrm{N}(4)-\mathrm{O}(3)$	$1.20(2)$
$\mathrm{Cu}-\mathrm{S}(3)$	$2.228(5)$	$\mathrm{N}(4)-\mathrm{O}(2)$	$1.26(2)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.68(2)$	$\mathrm{S}(2)-\mathrm{C}(6)$	$1.70(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.43(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.43(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.35(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.38(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.42(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.43(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.41(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.33(2)$
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.36(2)$	$\mathrm{C}(10)-\mathrm{N}(2)$	$1.36(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.38(2)$	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.38(2)$
$\mathrm{S}(3)-\mathrm{C}(11)$	$1.70(1)$		

$\mathrm{S}(3)-\mathrm{C}(11)$	$1.70(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.41(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.35(2)$

$\begin{array}{ll}\mathrm{C}(13)-\mathrm{C}(14) & 1.43(3) \\ \mathrm{C}(14)-\mathrm{C}(15) & 1.36(3) \\ \mathrm{C}(15)-\mathrm{N}(3) & 1.34(2) \\ \mathrm{N}(3)-\mathrm{C}(11) & 1.37(2)\end{array}$
$\mathrm{N}(3)-\mathrm{C}(11) \quad 1.37$ (2)
(b) Bond angles

S(1)-Cu-S(2)	131.0 (0.2)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.3 (1.1)
$\mathrm{S}(1)-\mathrm{Cu}-\mathrm{S}(3)$	109.0 (0.2)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	122.5 (1.2)
$\mathrm{S}(2)-\mathrm{Cu}-\mathrm{S}(3)$	$120 \cdot 0$ (0.2)	S(2)-C(6)-C(7)	127.2 (1.0)
$\mathrm{Cu}-\mathrm{S}(1)-\mathrm{C}(1)$	108.8 (0.6)	$\mathrm{S}(2)-\mathrm{C}(6)-\mathrm{N}(2)$	117.1 (1.0)
$\mathrm{Cu}-\mathrm{S}(2)-\mathrm{C}(6)$	111.5 (0.5)	$\mathrm{S}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	125.3 (1.2)
$\mathrm{Cu}-\mathrm{S}(3)-\mathrm{C}(11)$	110.1 (0.6)	$\mathrm{S}(3)-\mathrm{C}(11)-\mathrm{N}(3)$	118.4 (1.2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	114.1 (1.4)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	115.7 (1.3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.3 (1.3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.2 (1.3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.6 (1.6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.0 (1.4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.6 (1.6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.3 (1.5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	116.6 (1.3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	121.5 (1.2)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	127.7 (1.3)	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	124.1 (1-1)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	116.2 (1.2)		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.2 (1.7)		
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.9 (1.8)		
C(13)-C(14)-C(15)	117.9 (1.4)		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)$	119.6 (1.5)		
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	125.1 (1.4)		

(c) Hydrogen-bond distances

$\mathrm{N}(1)-\mathrm{H}(13) \cdots \mathrm{O}\left(1^{1}\right)$	$3.37(2)$
$\mathrm{N}(2)-\mathrm{H}(14) \cdots \mathrm{O}\left(2^{11}\right)$	$2.82(2)$
$\mathrm{N}(3)-\mathrm{H}(15) \cdots \mathrm{O}(3)$	$3.13(2)$

Symmetry code
(i) $2-x,-1-y, 1-z$
(ii) $x, 1+y, z$
tance of the Cu atom from the plane of the S atoms is 0.034 (2) \AA. Whereas the angle $\mathrm{S}(2)-\mathrm{Cu}-\mathrm{S}(3)$ is ideal [120.0 (2) ${ }^{\circ}$], the other two deviate considerably from 120°, being 109.0 (2) and $131.0(2)^{\circ}$. This deviation may be attributed to steric hindrance caused by the adjacent pyridine rings $P 1$ and $P 2$ (Fig. 1). These rings are roughly parallel to each other $[P 1 \wedge P 2=$ $15.01(3)^{\circ}$] and their angles with the plane of the S atoms are 51.74 (2) and $39.95(6)^{\circ}$, respectively. This conformation causes the deviation of the two $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles from their ideal value. The third pyridine ring $P 3$ makes an angle of $37.87(10)^{\circ}$ with the plane of the S atoms.

The three $\mathrm{Cu}-\mathrm{S}$ bond lengths $2 \cdot 225$ (5), $2 \cdot 228$ (5) and $2 \cdot 213$ (5) \AA are normal and fall within the range of values found in other $\mathrm{Cu}-\mathrm{S}$ complexes [see references mentioned above and especially the literature cited in Coucouvanis, Murphy \& Kanodia (1980)]. Once again

Fig. 2. Clinographic projection of the molecular packing in the unit cell.
it is found that the $\mathrm{Cu}-\mathrm{S}$ distances in trigonal coordination are considerably shorter than the sum of the corresponding tetrahedral covalent radii, i.e. $2 \cdot 39 \AA$ (Pauling, 1960). However, this fact may not be considered as sufficient evidence for the existence of partial multiple bonding.

The $\mathrm{S}-\mathrm{C}$ bond distances are normal and the $\mathrm{Cu}-\mathrm{S}-\mathrm{C}$ bond angles are less than the value of 120° expected for $s p^{2}$-hybridized atoms, in good agreement with what has been so far reported (Spofford \& Amma, 1970; Girling \& Amma, 1971; Weininger et al., 1972; Coucouvanis et al., 1980).

The geometrical features of the pyridine rings are close to those of an aromatic ring. The mean $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ distances in rings $P 1, P 2$ and $P 3$ are $1 \cdot 40$ (2) and 1.37 (2), 1.39 (2) and 1.37 (2), 1.39 (2) and 1.35 (2) \AA, respectively. These values and the corresponding bond angles are in agreement with the values found in most pyridine compounds (Fletcher \& Skapski, 1972; Downie Harrison \& Raper, 1972; Le

Borgne \& Grandjean, 1975; Cotton, Fanwick \& Fitch, 1978).

The molecular packing is illustrated in Fig. 2. The isolated $\mathrm{Cu}\left(\mathrm{SC}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}^{+}$ions are connected to the planar nitrate ions through hydrogen bonds $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$, the presence of which is shown also from IR spectra [presence of $v(\mathrm{NH})$ at $3185 \mathrm{~cm}^{-1}$ and absence of $v(\mathrm{SH})$ at $\left.2500 \mathrm{~cm}^{-1}\right]$. The three hydrogen bridging bonds 3.37 (2), 2.82 (2) and 3.13 (2) \AA (Table 2) are within the range of acceptable values. In the nitrate ion the $\mathrm{N}(4)-\mathrm{O}(2)$ distance $[1.26$ (2) \AA] is longer than the other two. This slight asymmetry may be attributed to the corresponding shortest hydrogen-bridge distance, namely $\mathrm{O}(2) \cdots \mathrm{H}(14)-\mathrm{N}(2)=2 \cdot 82$ (2) \AA.

We thank the University of Thessaloniki for the use of its computer facilities.

References

Cotton, F. A., Fanwick, P. E. \& Fitch, J. W. (1978). Inorg. Chem. 17, 3254-3257.
Coucouvanis, D., Murphy, C. N. \& Kanodia, S. K. (1980). Inorg. Chem. 19, 2993-2998.
Downie, T. C., Harrison, W. \& Raper, E. S. (1972). Acta Cryst. B28, 283-290.
Fletcher, S. R. \& Skapski, A. C. (1972). J. Chem. Soc. Dalton Trans. pp. 635-639.
Girling, R. L. \& Amma, E. L. (1971). Inorg. Chem. 10, 335-340.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press.
Le Borgne, G. \& Grandjean, D. (1975). J. Organomet. Chem. 92, 381-392.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J.-P. (1977). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Spofford, W. A. III \& Amma, E. L. (1970). Acta Cryst. B26, 1474-1483.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1976). The XRAY system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Weininger, M. S., Hunt, G. W. \& Amma, E. L. (1972). J. Chem. Soc. Chem. Commun. pp. 1140-1141.

[^0]: * Present address: Medical Foundation of Buffalo, Inc., 73 High Street, Buffalo, New York 14203, USA.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters of the non-hydrogen atoms, H -atom parameters, bond lengths involving H atoms and various least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP $38150(14 \mathrm{pp})$. Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

